sbd-data-book

Models

We can list all models with the following query:

SPARQL sparql/allModels.rq (run)

PREFIX rdfs:    <http://www.w3.org/2000/01/rdf-schema#>
PREFIX sbd:     <https://www.sbd4nano.eu/rdf/#>
PREFIX dc:      <http://purl.org/dc/elements/1.1/>
PREFIX dct:     <http://purl.org/dc/terms/>
SELECT ?model ?modelLabel ?provider WHERE {
  ?model a sbd:Model ;
     dc:source ?providerRes.
  OPTIONAL { ?model rdfs:label ?rdfsLabel }
  BIND(COALESCE(?rdfsLabel, str(?model)) AS ?modelLabel)
  ?providerRes dct:title | dc:title ?provider .
} ORDER BY ?model

This gives us:

model provider
PhysChem: Zeta potential NanoXtract model NanoSolveIT Tools
NanoSolveIT Tool for Assessment of Human Exposure to Nanomaterials NanoSolveIT Tools
Nanocompound: Toxicity Metal-Oxide: Anantha 2021 SbD4nano Nanocompound
Nanocompound: Toxicity Metal-Oxide: Gajewicz 2015 SbD4nano Nanocompound
Nanocompound: LDH(TiO2) SbD4nano Nanocompound
Nanocompound: LDH(TiO2+ZnO) SbD4nano Nanocompound
Nanocompound: LDH(TiO2+ZnO) SbD4nano Nanocompound
Nanocompound: Toxicity Metal-Oxide: Puzyn 2011 SbD4nano Nanocompound
Nanocompound: Toxicity Metal-Oxide: Serratosa2022 SbD4nano Nanocompound
Nanocompound: LDH(TiO2): Serratosa2022 SbD4nano Nanocompound
Nanocompound: LDH(TiO2+ZnO): Serratosa2022 SbD4nano Nanocompound
Nanocompound: LDH(ZnO): Serratosa2022 SbD4nano Nanocompound
NanoSolveIT Cytotoxicity (Cell Viability) Prediction for Metal Oxide NPs NanoSolveIT Tools
DeepDaph NanoSolveIT Tools
SimpleBMD NanoInformaTIX Tools
FunMappOne NanoSolveIT Tools
https://h2020-sbd4nano.github.io/sbd-data-landscape/Model_10 Computational models for the assessment of manufactured nanomaterials
https://h2020-sbd4nano.github.io/sbd-data-landscape/Model_11 Computational models for the assessment of manufactured nanomaterials
https://h2020-sbd4nano.github.io/sbd-data-landscape/Model_12 Computational models for the assessment of manufactured nanomaterials
https://h2020-sbd4nano.github.io/sbd-data-landscape/Model_13 Computational models for the assessment of manufactured nanomaterials
https://h2020-sbd4nano.github.io/sbd-data-landscape/Model_14 Computational models for the assessment of manufactured nanomaterials
https://h2020-sbd4nano.github.io/sbd-data-landscape/Model_15 Computational models for the assessment of manufactured nanomaterials
https://h2020-sbd4nano.github.io/sbd-data-landscape/Model_16 Computational models for the assessment of manufactured nanomaterials
This table is truncated. See the full table at sparql/allModels.rq

NanoMaterials

We can also list the number of models that can make some prediction for a particular material:

SPARQL sparql/modelsForNanomaterials.rq (run)

PREFIX npo: <http://purl.bioontology.org/ontology/npo#>
PREFIX obo: <http://purl.obolibrary.org/obo/>
PREFIX rdfs:    <http://www.w3.org/2000/01/rdf-schema#>
PREFIX sbd:     <https://www.sbd4nano.eu/rdf/#>
PREFIX sbdbel:  <https://www.sbd4nano.eu/bel/#>
PREFIX dc:      <http://purl.org/dc/elements/1.1/>
PREFIX dct:     <http://purl.org/dc/terms/>
PREFIX skos:    <http://www.w3.org/2004/02/skos/core#>
SELECT ?material (SAMPLE(?material_) AS ?materialLabel) (COUNT(DISTINCT ?model) AS ?count)
WHERE {
  ?material rdfs:label ?material_ .
  ?model a sbd:Model .
  { ?model sbdbel:NP ?material . } UNION { ?model dct:subject / skos:narrower ?material . }
  OPTIONAL { ?model rdfs:label ?rdfsLabel }
  BIND(COALESCE(?rdfsLabel, str(?model)) AS ?modelLabel)
} GROUP BY ?material
  ORDER BY DESC(?count)

This gives:

material count
ZnO 50
R-TiO2 46
Fe2O3 39
SiO2 34
Al2O3 33
lanthanum(3+);oxygen(2-) 32
oxonickel 31
oxygen(2-);yttrium(3+) 31
Cobalt (II) oxide nanoparticle 30
indium(3+);oxygen(2-) 30
chromium(3+);oxygen(2-) 30
dioxotin 30
dioxozirconium 30
This table is truncated. See the full table at sparql/modelsForNanomaterials.rq