Because the eNanoMapper ontology [1] is loaded, we can take advantage of the
hierarchy of the ontology. For example, we can list all titania’s (npo:NPO_1486
)
with this SPARQL:
SPARQL sparql/allTitanias.rq (run)
PREFIX npo: <http://purl.bioontology.org/ontology/npo#>
PREFIX obo: <http://purl.obolibrary.org/obo/>
SELECT DISTINCT ?nm (SAMPLE(?nmLabel_) AS ?nmLabel)
WHERE {
VALUES ?superclass { npo:NPO_1486 obo:CHEBI_51050 }
?nm rdfs:subClassOf* ?superclass ; rdfs:label ?nmLabel_ .
} GROUP BY ?nm
This gives us this list of nanomaterials:
Using the hierarchy, we can find resources about a specific nanomaterial (here JRCNM01005a) or about any of its superclasses:
SPARQL sparql/allTitaniaResources.rq (run)
PREFIX sbd: <https://www.sbd4nano.eu/rdf/#>
PREFIX sbdbel: <https://www.sbd4nano.eu/bel/#>
PREFIX dcterms: <http://purl.org/dc/terms/>
PREFIX npo: <http://purl.bioontology.org/ontology/npo#>
PREFIX obo: <http://purl.obolibrary.org/obo/>
PREFIX enm: <http://purl.enanomapper.org/onto/>
PREFIX sio: <http://semanticscience.org/resource/SIO_>
PREFIX sbdbel2: <https://h2020-sbd4nano.github.io/sbdbel/>
SELECT DISTINCT ?superclasses (SAMPLE(?superclassesLabel_) AS ?superclassesLabel) ?type (COUNT(DISTINCT ?resource) AS ?count)
WHERE {
VALUES ?superclasses { npo:NPO_1541 npo:NPO_1486 enm:ENM_9000077 } # metal oxide, TiO2, JRCNM01005a
?nm rdfs:subClassOf* ?superclasses .
?superclasses rdfs:label ?superclassesLabel_ .
OPTIONAL {
?resource a ?type ;
sbdbel:NP | sio:000332 | sbdbel2:NP ?nm .
?type rdfs:label ?typeLabel .
}
} GROUP BY ?superclasses ?superclassesLabel ?type
ORDER BY DESC(?count)
This returns:
superclasses | type | count |
Metal Oxide | https://www.sbd4nano.eu/rdf/#Model | 12 |
Metal Oxide | https://www.sbd4nano.eu/rdf/#Database | 7 |
Metal Oxide | https://www.sbd4nano.eu/rdf/#Dataset | 7 |
Metal Oxide | https://h2020-sbd4nano.github.io/sbdbel/CausalAssertion | 6 |
R-TiO2 | https://www.sbd4nano.eu/rdf/#Dataset | 1 |
R-TiO2 | 0 | |
Metal Oxide | 0 | |
JRCNM01005a | 0 |
This approach can be used to find datasets, models, causal relationships, etc applicable to a certain nanomaterial or nanomaterial class. For example, we can list all relationships for JRCNM01005a [2,3]:
SPARQL sparql/allJRCNM01005aRelationships.rq (run)
PREFIX sbd: <https://www.sbd4nano.eu/rdf/#>
PREFIX sbdbel: <https://www.sbd4nano.eu/bel/#>
PREFIX enm: <http://purl.enanomapper.org/onto/>
PREFIX npo: <http://purl.bioontology.org/ontology/npo#>
PREFIX sio: <http://semanticscience.org/resource/SIO_>
PREFIX sbdbel2: <https://h2020-sbd4nano.github.io/sbdbel/>
SELECT DISTINCT
?nm (SAMPLE(?nmLabel_) AS ?nmLabel)
(COUNT(DISTINCT ?relation) AS ?relations)
WHERE {
VALUES ?ca { sbdbel:CausalAssertion sbd:CausalAssertion sbdbel2:CausalAssertion }
VALUES ?nm { enm:ENM_9000077 }
?nm rdfs:label ?nmLabel_ .
OPTIONAL { ?relation a ?ca ; sbdbel:NP | sio:000332 | sbdbel2:NP ?nm . }
} GROUP BY ?superclass ?nm
But for a specific material, such relationships may not exist:
nm | relations |
JRCNM01005a | 0 |
In that case, we can better look for relationships for the class of nanoforms this material is part of.
For example, we can list all relationships for all metal oxides:
SPARQL sparql/allTitaniumOxideRelationships.rq (run)
PREFIX sbd: <https://www.sbd4nano.eu/rdf/#>
PREFIX sbdbel: <https://www.sbd4nano.eu/bel/#>
PREFIX npo: <http://purl.bioontology.org/ontology/npo#>
PREFIX sio: <http://semanticscience.org/resource/SIO_>
PREFIX sbdbel2: <https://h2020-sbd4nano.github.io/sbdbel/>
SELECT DISTINCT
?superclass (SAMPLE(?superclassLabel_) AS ?superclassLabel)
?nm (SAMPLE(?nmLabel_) AS ?nmLabel)
(COUNT(DISTINCT ?relation) AS ?relations)
WHERE {
VALUES ?ca { sbdbel:CausalAssertion sbd:CausalAssertion sbdbel2:CausalAssertion }
VALUES ?superclass { npo:NPO_1486 }
?nm rdfs:subClassOf* ?superclass ; rdfs:label ?nmLabel_ .
?superclass rdfs:label ?superclassLabel_ .
?relation a ?ca ; sbdbel:NP | sio:000332 | sbdbel2:NP ?nm .
} GROUP BY ?superclass ?nm
But this still returns no relationships:
For example, we can list all relationships for all metal oxides:
SPARQL sparql/allMetalOxideRelationships.rq (run)
PREFIX sbd: <https://www.sbd4nano.eu/rdf/#>
PREFIX sbdbel: <https://www.sbd4nano.eu/bel/#>
PREFIX npo: <http://purl.bioontology.org/ontology/npo#>
PREFIX sio: <http://semanticscience.org/resource/SIO_>
PREFIX sbdbel2: <https://h2020-sbd4nano.github.io/sbdbel/>
SELECT DISTINCT
?superclass (SAMPLE(?superclassLabel_) AS ?superclassLabel)
?nm (SAMPLE(?nmLabel_) AS ?nmLabel)
(COUNT(DISTINCT ?relation) AS ?relations)
WHERE {
VALUES ?ca { sbdbel:CausalAssertion sbd:CausalAssertion sbdbel2:CausalAssertion }
VALUES ?superclass { npo:NPO_1541 }
?nm rdfs:subClassOf* ?superclass ; rdfs:label ?nmLabel_ .
?superclass rdfs:label ?superclassLabel_ .
?relation a ?ca ; sbdbel:NP | sio:000332 | sbdbel2:NP ?nm .
} GROUP BY ?superclass ?nm
We find here that basically all relationships are defined at a metal oxide level:
superclass | nm | relations |
Metal Oxide | Metal Oxide | 6 |
Toxicity of titanium dioxide has been extensively studied. Noting that for many resources we do not have detailed annotation of the nanoforms described by those sources, some do:
SPARQL sparql/allTitaniaData.rq (run)
PREFIX npo: <http://purl.bioontology.org/ontology/npo#>
PREFIX obo: <http://purl.obolibrary.org/obo/>
PREFIX sbd: <https://www.sbd4nano.eu/rdf/#>
PREFIX sbdbel: <https://www.sbd4nano.eu/bel/#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX erm: <https://nanocommons.github.io/identifiers/registry#>
PREFIX enm: <http://purl.enanomapper.org/onto/>
SELECT ?materialIRI (SAMPLE(?material_) AS ?material) ?dataset ?datasetLabel
WHERE {
VALUES ?superclass { npo:NPO_1486 obo:CHEBI_51050 }
VALUES ?type { sbd:Dataset sbd:Database }
?dataset sbdbel:NP ?materialIRI ; a ?type ; rdfs:label ?datasetLabel .
?materialIRI rdfs:subClassOf* ?superclass ; rdfs:label ?material_ .
} GROUP BY ?materialIRI ?dataset ?datasetLabel
ORDER BY ?dataset
This gives:
We can list all models for titanium dioxide with the following query:
SPARQL sparql/allTitaniaModels.rq (run)
PREFIX npo: <http://purl.bioontology.org/ontology/npo#>
PREFIX obo: <http://purl.obolibrary.org/obo/>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX sbd: <https://www.sbd4nano.eu/rdf/#>
PREFIX sbdbel: <https://www.sbd4nano.eu/bel/#>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX dct: <http://purl.org/dc/terms/>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
SELECT ?model ?modelLabel ?provider
(group_concat(distinct ?material_;separator=", ") AS ?material)
WHERE {
VALUES ?superclass { npo:NPO_1486 obo:CHEBI_51050 }
?materialIRI rdfs:subClassOf* ?superclass ; rdfs:label ?material_ .
?model a sbd:Model ;
dc:source ?providerRes.
{ ?model sbdbel:NP ?materialIRI . } UNION { ?model dct:subject / skos:narrower ?materialIRI . }
OPTIONAL { ?model rdfs:label ?rdfsLabel }
BIND(COALESCE(?rdfsLabel, str(?model)) AS ?modelLabel)
?providerRes dct:title | dc:title ?provider .
} GROUP BY ?model ?modelLabel ?provider
ORDER BY ?model
This gives us:
model | provider | material |
Nanocompound: LDH(TiO2) | SbD4nano Nanocompound | titanium dioxide nanoparticle |
Nanocompound: LDH(TiO2+ZnO) | SbD4nano Nanocompound | titanium dioxide nanoparticle |
Nanocompound: LDH(TiO2): Serratosa2022 | SbD4nano Nanocompound | titanium dioxide nanoparticle |
Nanocompound: LDH(TiO2+ZnO): Serratosa2022 | SbD4nano Nanocompound | titanium dioxide nanoparticle |
https://h2020-sbd4nano.github.io/sbd-data-landscape/Model_10 | Computational models for the assessment of manufactured nanomaterials | R-TiO2, TiO2, titanium oxide nanoparticle |
https://h2020-sbd4nano.github.io/sbd-data-landscape/Model_12 | Computational models for the assessment of manufactured nanomaterials | R-TiO2, TiO2, titanium oxide nanoparticle |
https://h2020-sbd4nano.github.io/sbd-data-landscape/Model_14 | Computational models for the assessment of manufactured nanomaterials | R-TiO2, TiO2, titanium oxide nanoparticle |
https://h2020-sbd4nano.github.io/sbd-data-landscape/Model_16 | Computational models for the assessment of manufactured nanomaterials | R-TiO2, TiO2, titanium oxide nanoparticle |
https://h2020-sbd4nano.github.io/sbd-data-landscape/Model_20 | Computational models for the assessment of manufactured nanomaterials | R-TiO2, TiO2, titanium oxide nanoparticle |
https://h2020-sbd4nano.github.io/sbd-data-landscape/Model_21 | Computational models for the assessment of manufactured nanomaterials | R-TiO2, TiO2, titanium oxide nanoparticle |
https://h2020-sbd4nano.github.io/sbd-data-landscape/Model_23a | Computational models for the assessment of manufactured nanomaterials | R-TiO2, TiO2, titanium oxide nanoparticle |
https://h2020-sbd4nano.github.io/sbd-data-landscape/Model_23b | Computational models for the assessment of manufactured nanomaterials | R-TiO2, TiO2, titanium oxide nanoparticle |
https://h2020-sbd4nano.github.io/sbd-data-landscape/Model_25e | Computational models for the assessment of manufactured nanomaterials | R-TiO2, TiO2, titanium oxide nanoparticle |
https://h2020-sbd4nano.github.io/sbd-data-landscape/Model_29a | Computational models for the assessment of manufactured nanomaterials | R-TiO2, TiO2, titanium oxide nanoparticle |
https://h2020-sbd4nano.github.io/sbd-data-landscape/Model_29b | Computational models for the assessment of manufactured nanomaterials | R-TiO2, TiO2, titanium oxide nanoparticle |
https://h2020-sbd4nano.github.io/sbd-data-landscape/Model_2a | Computational models for the assessment of manufactured nanomaterials | R-TiO2, TiO2, titanium oxide nanoparticle |
https://h2020-sbd4nano.github.io/sbd-data-landscape/Model_31a | Computational models for the assessment of manufactured nanomaterials | R-TiO2, TiO2, titanium oxide nanoparticle |
https://h2020-sbd4nano.github.io/sbd-data-landscape/Model_31b | Computational models for the assessment of manufactured nanomaterials | R-TiO2, TiO2, titanium oxide nanoparticle |
https://h2020-sbd4nano.github.io/sbd-data-landscape/Model_34a | Computational models for the assessment of manufactured nanomaterials | R-TiO2, TiO2, titanium oxide nanoparticle |
https://h2020-sbd4nano.github.io/sbd-data-landscape/Model_34b | Computational models for the assessment of manufactured nanomaterials | R-TiO2, TiO2, titanium oxide nanoparticle |
https://h2020-sbd4nano.github.io/sbd-data-landscape/Model_38a | Computational models for the assessment of manufactured nanomaterials | R-TiO2, TiO2, titanium oxide nanoparticle |
https://h2020-sbd4nano.github.io/sbd-data-landscape/Model_38b | Computational models for the assessment of manufactured nanomaterials | R-TiO2, TiO2, titanium oxide nanoparticle |
https://h2020-sbd4nano.github.io/sbd-data-landscape/Model_38d | Computational models for the assessment of manufactured nanomaterials | R-TiO2, TiO2, titanium oxide nanoparticle |
This table is truncated. See the full table at sparql/allTitaniaModels.rq |
But more general metal oxide models may be useful too:
SPARQL sparql/allMetalOxideModels.rq (run)
PREFIX npo: <http://purl.bioontology.org/ontology/npo#>
PREFIX obo: <http://purl.obolibrary.org/obo/>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX sbd: <https://www.sbd4nano.eu/rdf/#>
PREFIX sbdbel: <https://www.sbd4nano.eu/bel/#>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX dct: <http://purl.org/dc/terms/>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
SELECT ?model ?modelLabel ?provider
(group_concat(distinct ?material_;separator=", ") AS ?material)
WHERE {
VALUES ?superclass { npo:NPO_1541 }
?materialIRI rdfs:subClassOf* ?superclass ; rdfs:label ?material_ .
?model a sbd:Model ;
dc:source ?providerRes.
{ ?model sbdbel:NP ?materialIRI . } UNION { ?model dct:subject / skos:narrower ?materialIRI . }
OPTIONAL { ?model rdfs:label ?rdfsLabel }
BIND(COALESCE(?rdfsLabel, str(?model)) AS ?modelLabel)
?providerRes dct:title | dc:title ?provider .
} GROUP BY ?model ?modelLabel ?provider
ORDER BY ?model
This gives us:
model | provider | material |
PhysChem: Zeta potential NanoXtract model | NanoSolveIT Tools | Metal Oxide, metal oxide nanoparticle |
Nanocompound: Toxicity Metal-Oxide: Anantha 2021 | SbD4nano Nanocompound | Metal Oxide, metal oxide nanoparticle |
Nanocompound: Toxicity Metal-Oxide: Gajewicz 2015 | SbD4nano Nanocompound | Metal Oxide, metal oxide nanoparticle |
Nanocompound: LDH(TiO2) | SbD4nano Nanocompound | titanium dioxide nanoparticle |
Nanocompound: LDH(TiO2+ZnO) | SbD4nano Nanocompound | ZnO, zinc oxide nanoparticle, titanium dioxide nanoparticle |
Nanocompound: LDH(TiO2+ZnO) | SbD4nano Nanocompound | ZnO, zinc oxide nanoparticle |
Nanocompound: Toxicity Metal-Oxide: Puzyn 2011 | SbD4nano Nanocompound | Metal Oxide, metal oxide nanoparticle |
Nanocompound: Toxicity Metal-Oxide: Serratosa2022 | SbD4nano Nanocompound | Metal Oxide, metal oxide nanoparticle |
Nanocompound: LDH(TiO2): Serratosa2022 | SbD4nano Nanocompound | titanium dioxide nanoparticle |
Nanocompound: LDH(TiO2+ZnO): Serratosa2022 | SbD4nano Nanocompound | ZnO, zinc oxide nanoparticle, titanium dioxide nanoparticle |
Nanocompound: LDH(ZnO): Serratosa2022 | SbD4nano Nanocompound | ZnO, zinc oxide nanoparticle |
NanoSolveIT Cytotoxicity (Cell Viability) Prediction for Metal Oxide NPs | NanoSolveIT Tools | Metal Oxide, metal oxide nanoparticle |
https://h2020-sbd4nano.github.io/sbd-data-landscape/Model_10 | Computational models for the assessment of manufactured nanomaterials | Fe2O3, iron (III) oxide nanoparticle, ZnO, zinc oxide nanoparticle, R-TiO2, TiO2, titanium oxide nanoparticle, Cobalt (II) oxide nanoparticle, cobalt oxide nanoparticle |
https://h2020-sbd4nano.github.io/sbd-data-landscape/Model_11 | Computational models for the assessment of manufactured nanomaterials | (Fe2O3)n(Fe3O4)m, iron oxide nanoparticle |
https://h2020-sbd4nano.github.io/sbd-data-landscape/Model_12 | Computational models for the assessment of manufactured nanomaterials | Fe2O3, iron (III) oxide nanoparticle, ZnO, zinc oxide nanoparticle, Fe3O4, iron (II,III) oxide nanoparticle, R-TiO2, TiO2, titanium oxide nanoparticle, Cobalt (II) oxide nanoparticle, cobalt oxide nanoparticle, Co3O4 nanoparticle |
https://h2020-sbd4nano.github.io/sbd-data-landscape/Model_14 | Computational models for the assessment of manufactured nanomaterials | Fe2O3, iron (III) oxide nanoparticle, ZnO, zinc oxide nanoparticle, Fe3O4, iron (II,III) oxide nanoparticle, R-TiO2, TiO2, titanium oxide nanoparticle, Cobalt (II) oxide nanoparticle, cobalt oxide nanoparticle, Co3O4 nanoparticle |
https://h2020-sbd4nano.github.io/sbd-data-landscape/Model_15 | Computational models for the assessment of manufactured nanomaterials | Fe2O3, iron (III) oxide nanoparticle, Fe3O4, iron (II,III) oxide nanoparticle |
https://h2020-sbd4nano.github.io/sbd-data-landscape/Model_16 | Computational models for the assessment of manufactured nanomaterials | R-TiO2, TiO2, titanium oxide nanoparticle |
https://h2020-sbd4nano.github.io/sbd-data-landscape/Model_18 | Computational models for the assessment of manufactured nanomaterials | (Fe2O3)n(Fe3O4)m, iron oxide nanoparticle |
https://h2020-sbd4nano.github.io/sbd-data-landscape/Model_1a | Computational models for the assessment of manufactured nanomaterials | (Fe2O3)n(Fe3O4)m, iron oxide nanoparticle |
https://h2020-sbd4nano.github.io/sbd-data-landscape/Model_1b | Computational models for the assessment of manufactured nanomaterials | (Fe2O3)n(Fe3O4)m, iron oxide nanoparticle |
https://h2020-sbd4nano.github.io/sbd-data-landscape/Model_20 | Computational models for the assessment of manufactured nanomaterials | Fe2O3, iron (III) oxide nanoparticle, ZnO, zinc oxide nanoparticle, Fe3O4, iron (II,III) oxide nanoparticle, R-TiO2, TiO2, titanium oxide nanoparticle |
https://h2020-sbd4nano.github.io/sbd-data-landscape/Model_21 | Computational models for the assessment of manufactured nanomaterials | Fe2O3, iron (III) oxide nanoparticle, ZnO, zinc oxide nanoparticle, Fe3O4, iron (II,III) oxide nanoparticle, R-TiO2, TiO2, titanium oxide nanoparticle |
This table is truncated. See the full table at sparql/allMetalOxideModels.rq |